Activated carbon-Fe catalyst modification on stainless steel cathode affects hydrogen production in microbial electrolysis cell

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy recovery from tubular microbial electrolysis cell with stainless steel mesh as cathode

In comparison to the transportation and storage of hydrogen, methane has advantages in the practical application, while the emerging product termed as 'biohythane' could be an alternative to pure hydrogen or methane in a new form of energy recovery from microbial electrolysis cell (MEC). However, the cathodic catalyst even for biohythane still bothers the performance and cost of total MEC. Here...

متن کامل

Hydrogen gas production in a microbial electrolysis cell by electrohydrogenesis

Electrohydrogenesis is a bio-electrochemical process where organic material is microbially oxidized to protons and electrons, which in turn are reduced to form hydrogen gas (H2). The reactor in which these reactions occur is termed a microbial electrolysis cell (MEC). The microorganisms that colonize the anode are known as electricigens and behave as biological catalysts, significantly reducing...

متن کامل

Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5–1 mm) and their performance was compared to conventional electrodes containing Pt (0.002 mm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, c...

متن کامل

The significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)

Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...

متن کامل

Author's personal copy Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production

Microbial electrolysis cells (MECs) are often examined for hydrogen production using nonsustainable phosphate buffered solutions (PBS), although carbonate buffers have been shown to work in other bioelectrochemical systems with a platinum (Pt) catalyst. Stainless steel (SS) has been shown to be an effective catalyst for hydrogen evolution in MECs, but it has not been tested with carbonate buffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOP Conference Series: Earth and Environmental Science

سال: 2021

ISSN: 1755-1307,1755-1315

DOI: 10.1088/1755-1315/749/1/012071